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In this study, the explicit time integration method is employed to predict deformations of 
highly flexible solar sail structural components. The nonlinear static analysis of a highly 
flexible ribbon structure is presented to demonstrate the need for having the explicit time 
integration method in the analysis toolbox for solar sails. Static analyses of the ribbon 
structure produce ambiguous results whereas the explicit time integration method 
determines the correct results. Extensive benchmarking examples are also presented to build 
confidence in the use of the explicit method. Previously determined nonlinear wrinkling 
deformations of solar sail membranes are found by the explicit method. As the explicit 
method is known to often require more computational time than nonlinear static methods, a 
study on mass scaling was also conducted. The computational times are reported for the 
nonlinear static and explicit time integration solutions to calibrate the advantage of using 
mass scaling for these problems. 

I. Introduction 
Ultra-Lightweight Inflatable Structures have become very attractive because they can meet structural 

requirements for space applications at a low cost. Recently NASA’s In-Space Propulsion (ISP) technology program 
has supported the development of solar sails for deep space science exploration missions. Solar sails capture the 
momentum of sunlight photons1 as their source of propulsion. Since the gained momentum per unit sail-surface area 
is quite small, solar sails must be very large, and the sail membranes must be thinner than paper to produce useful 
thrust for the attached spacecraft. 

A typical sail is constructed from two major structural components, booms and sail membranes.2, 3 In order to 
minimize payload packaging, the long supporting booms and sail membranes need to be folded to fit into the shroud 
of a small launch vehicle. The booms can be mechanically deployed as isogrid booms or inflation-deployed as thin 
walled tubes. The unfolding of the sail membranes can occur during or after the boom deployment. Billowed and 
wrinkled solar sails are less effective than flat solar sails due to the reduced momentum exchange provided by 
oblique incidence photons. To keep billowing within allowable limits, membrane tension is needed. However, the 
membrane tension may exacerbate the sail’s wrinkling problem.  

Quasi-static modeling methods can be used to determine the static wrinkling and billowing deformations of solar 
sail membranes. When nonlinear Newton-Raphson and Riks methods are employed to obtain these deformations, a 
near singular tangent stiffness matrix is often encountered resulting in poor convergence rates or in convergence to 
physically unrealistic solutions. Quasi-static modeling with explicit time integration is an alternative approach which 
does not require the inverse of a near singular matrix.4 The drawback to employing explicit time integration is that 
very small time steps are required to maintain accuracy and algorithm stability. As a result, quasi-static modeling is 
computationally intensive. 
 In this paper, an overview of the explicit time integration method is first presented. Analyses of a laterally loaded 
ribbon-like sail strip using a nonlinear static solver and the explicit time integration solver are then conducted. This 
problem demonstrates the need for using the explicit time integration method in the analysis of solar sail structures. 
Finally, benchmark analyses of solar sail wrinkling and billowing problems are performed, employing various 
loading rates and mass scaling methods to reduce the computational time of the explicit time integration method. 
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II. Explicit Time Integration  
The equations of motion of a discretized nonlinear structural system can be written as 

 
extint ffuCuM =++ &&&                                                                     (1) 

where and are the vectors of generalized velocities and accelerations, respectively.  and C  are the mass 
and damping matrices, and and  are the vectors of the internal and external forces. The internal forces 
include the effects of material and geometric nonlinearities. Therefore, the internal force vector has to be updated at 
each time step during the time integration of the equations of motion. At the current configuration, the internal 
forces may be evaluated from
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where  is the strain-displacement matrix, V is the current volume, and B σ  is the vector of Cauchy stresses. For 
linear problems, the internal forces can be written as 

 uKf =int  (3) 

where K  is the stiffness matrix of the system, and u is the vector of generalized displacements.  
The equations of motion of a discretized nonlinear structural system can be solved by an explicit time integration 

method. The explicit method presented in the following section uses a central difference time integration scheme 
with lumped mass and damping matrices. In this system of equations, the variables of the current time step form a 
vector on the left-hand-side, and the terms on the right-hand-side of the equation are known from the previous time 
step. Only simple algebraic manipulations are needed to obtain the system solutions.   

A. Central Difference Scheme for Explicit Time Integration  
The central difference scheme to approximate and  for integrating the equation of motion is given by  u& u&&
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where ∆t is the time step length. Substituting Eq. (4) into Eq. (1), and employing lumped mass, , and damping 
 matrices (where α is the damping ratio), the explicit solution of Eq. (1) becomes                     
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In Eq. (5), is the diagonal term of the mass matrix related to the degree-of-freedom i;  is the internal force 

related to the degree-of-freedom i, which is calculated using Eq. (2); and  is the given external force 
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corresponding to the same degree-of-freedom i. Note that the terms in the right hand side of Eq. (5) are readily 
available. 

 
The central difference scheme5 (with no damping) is stable for a time step increment satisfying the following 

inequality  

                                                                              maxt ω≤∆ /2                                                                               (6) 

where  is the highest natural frequency of the finite element (FE) model. Damping can reduce the stable time 
step.  An upper bound for the stable time step with damping is given by  

maxω

 )1(2 2
maxmax

max
t ξ−ξ+

ω
≤∆  (7) 

where  is the fraction of critical damping in the mode with the highest natural frequency.  maxξ
An approximation to the maximum stable time step is often written as the smallest transit time required for a 

sound wave to travel through any of the elements in the mesh5 

 
S

Lt min≈∆  (8) 

where is the smallest element dimension in the mesh, and where is the speed of sound. For an isotropic shell 
element, the speed of sound can be expressed as

minL S
6 

 
ρν−

=
)1( 2
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where E is the Young’s modulus, ν  is the Poisson’s ratio, and ρ  is the material density. For shell elements, the 
element thickness is not considered in determining the smallest element dimension; the stability limit is based upon 
the midplane dimensions only. 

B. Quasi-static Analysis  
The quasi-static analysis approach described in ABAQUS/Explicit User’s Manual7 requires that the dynamic 

effects induced by the applied load are small. One general means of evaluating whether or not an explicit simulation 
is producing an appropriate quasi-static solution relies on studying the various energies of the structural model. The 
two most important energies are the internal energy and the kinetic energy. For an elastically deformed structure, the 
internal energy is the strain energy. Dynamic relaxation (DR) methods8, 9 can be used to determine a critical damping 
coefficient. The critical damping coefficient is the optimal value for damping. Using the critical damping coefficient 
enables the steady state solution to be reached in minimum computational time. Since the DR methods are not 
implemented into ABAQUS, the damping coefficients used in this paper were selected with a trial and error 
approach to assure that quasi-static solutions could be obtained. The following ad hoc rules were used to determine 
if a quasi-static solution had been achieved: 
 

1. The kinetic energy of the deformed structure shall not exceed a small fraction (about 5%) of its internal 
energy throughout most of time period of the explicit analysis.  

2. The ratio of the kinetic energy versus the internal energy shall be less than 0.1% at the steady state. 
3. The time rate of change of the internal energy shall be negligible at the steady state.  
4. The maximum out-of-plane deformation shall reach a constant value at the steady state. 
 

It often takes an intensive computational effort to obtain the quasi-static solution if the natural time scale of the 
structural model is used. The natural time scale is the stable time step length determined from the actual material 
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properties. To obtain a computationally efficient solution, a larger time step or a faster loading rate needs to be used. 
The mass scaling approaches in ABAQUS7 can be used to increase the stable time step length by increasing the 
mass density of some or all of the elements in the FE model. A fast loading rate can also be used so that the same 
physical event occurs in less time. As long as the dynamic effects are insignificant, the same static solution should 
be obtained. 

III. Numerical Simulation of Solar Sail Deformations  
Analyses using a nonlinear static analysis solver and the explicit method were conducted to simulate the 

geometrically nonlinear deformations of solar sail membranes. The nonlinear static analysis of a highly flexible thin 
sail ribbon in a stripped sail2 is presented to demonstrate the need for using the explicit time integration method for 
the analysis of solar sails. The sail membrane deformations, including wrinkling induced by the in-plane tension 
loads and billowing induced by gravity or solar pressure load, were predicted using the quasi-static analysis 
approach and the explicit method implemented in the ABAQUS/Explicit code.7 The analyses are benchmarked 
against the results using a nonlinear static analysis solver. The ABAQUS code was selected because it has both 
nonlinear static and explicit analysis capabilities. Results generated by both types of analyses were compared, and 
the feasibility of using the explicit method to simulate sail membrane nonlinear deformations was assessed. 
Furthermore, the use of mass scaling techniques and accelerated loading to shorten the total computational time was 
investigated. 

A. Thin Sail Ribbon under Gravity Load 
An unstretched thin ribbon with dimensions of 100 meters long, one meter wide, and one micrometer thick as 

shown in Fig. 1 was analyzed. The ribbon is pinned at both ends and deforms under its own weight. The material 
properties are listed in Table 1.  

 

The exact solution of the maxim

                                                          

where  is the length of the ribbonL
given ribbon, the maximum deflectio

Nonlinear static analyses were 
M3D4 membrane element and the 
element, and the S4R and S4R5 elem
a coarse mesh consisting of 100 el
elements in the width direction. In
because the ribbon has no stiffness
nearly singular or highly ill-conditio
One technique is to introduce a m
coefficient of thermal expansion (C
applied in three separate load steps
model to pre-tension the ribbon. In
loading was applied. Finally, in the 
an ABAQUS automatic mechanism
force is automatically added to the
including the STABILIZE paramete

Am
Table 1: Kapton properties 
Thickness 1.0×10-6 m 
Modulus 2.6×109 N/m2 
Poisson’s Ratio 0.3 
Density 1420 kg/m3 
 
um deflection at the mid-span, W , is given by the expressionmax

10 

         3
64

3
E
Lg 4

max
ρ

−=W                                                                             (10) 

,  is the density, and ρ =g 9.8 m/s2 is the acceleration due to gravity. For the 
n is -2.927 m. 

performed using four different types of elements in the ABAQUS code11 (the 
S4, S4R, and S4R5 shell elements). The S4 element is a full integration shell 

ents are reduced integration elements. Two different FE meshes were used: (1) 
ements and (2) a fine mesh consisting of 500 elements. Each model has four 
itially, the nonlinear static analyses cannot predict transverse displacements 

 associated with bending. In mathematical terms, the initial stiffness matrix is 
ned. Two techniques were used to circumvent the matrix singularity problem. 

embrane tension by slightly reducing the temperature in the membrane. The 
TE) is assumed to be 1.6×10-5/°C. The pre-tension and gravitational loads were 
. In the first load step, a temperature of -10o C was applied to all nodes in the 
 the second load step, the temperature was held constant; and the gravitational 
third load step, the temperature load was removed. The other technique is to use 
 for stabilizing the nonlinear solution in which a volume-proportional damping 
 model to overcome convergence difficulties. This mechanism is triggered by 
r in the ABAQUS nonlinear static solution procedure.  
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The nonlinear static analysis results for the thin ribbon are summarized in Table 2. The analysis results of the 
coarse mesh model with the M3D4 membrane element converged if one of the two singularity relieving techniques 
was used. The deformed shapes for all analyses using the M3D4 elements are similar to the deformed shape shown 
in Fig. 2(a) for the coarse mesh model. The analysis results of the refined mesh model with the stabilizing 
techniques also converged for the M3D4 element. However, the maximum deflections are significantly smaller than 
the exact solution. The deformed shape for the refined mesh model shown in Fig. 2(b) is quite different from the 
deformed mesh for the coarse mesh model shown in Fig. 2(a).  

Table 2: Results for 100m thin ribbon 
Analysis  
Type 

Element 
Type 

Mesh 
(Elements) 

Pretension STABLIZE 
Parameter*  

Converged 
Solution 

Max Deflection 
(m)  

Exact 
Solution 

    N/A -2.927** 

100x4 Yes  Yes -2.933*** 
100x4 No No No  
100x4  0.0002 Yes -2.917 
100x4  0.004 Yes -2.921 
500x4 Yes  Yes -2.933*** 
500x4  0.0002 Yes -0.7680# 

M3D4 

500x4  0.004 Yes -0.4066 
100x4 Yes  No  
100x4  0.0002 No  
100x4  0.001 No  
500x4  0.0002 No  

S4 

500x4  0.0004 No  
100x4 Yes  No  
100x4  0.0004 No  
100x4  0.001 No  
100x4  0.01 No  

S4R 

500x4  0.0002 No  
100x4 Yes  No  
100x4  0.0002 Yes -2.102 
100x4  0.0004 Yes -2.722 
100x4  0.001 Yes -2.78 
500x4  0.0002 Yes -5.6237E-3## 

Nonlinear  
Static 
Analysis 

S4R5 

500x4  0.0004 Yes -9.3065E-3 
100x4 No No N/A -2.933*** Explicit  

Analysis 
S4R 

500x4 No No N/A -2.932*** 
 
*  ABAQUS default value: 0.0002 
**  Ref. 10, Page 171 
***  Deflection Shape shown in Fig. 2(a) 
#  Deflection shape shown in Fig. 2(b) 
##  Deflection shape in Fig. 2(c)  

 
Using the full integration S4 element or the reduced integration S4R element for both the coarse and refined 

mesh models, all nonlinear static analysis results failed to converge. Using the reduced integration S4R5 element, 
the analysis results of the coarse mesh model with various values of the STABILIZE parameter converged and the 
deformed shapes were similar to that shown in Fig. 2(a). However, the maximum deflections are much less than the 
exact solution. Using the reduced integration S4R5 element for the refined mesh model, the analysis results with two 
different STABILIZE parameter values converged. However, the maximum deflections are very small and the 
deformed shape plotted in Fig. 2(c) is quite unexpected. The elements at both ends of the ribbon are stretched 
downward, whereas the interior elements all have the same downward out-of-plane deformations. From the 
experience of analyzing this thin ribbon problem, we found that nonlinear static analyses of thin membrane 
structures could encounter difficulties in getting converged solutions or producing correct results.  Other methods 

 
American Institute of Aeronautics and Astronautics 

 

5



such as the explicit time integration method need to be explored and used when the nonlinear static solution fails to 
converge.   

In the explicit analysis, the reduced integration S4R shell elements were used for both the coarse and refined 
mesh models. In this analysis, a damping ratio, α=2.0 s-1 was used to prevent load-induced membrane out-of-plane 
oscillations. The full gravity load of one g was applied (using a smooth ramp function) to the ribbon in 5 seconds. 
The full gravity load was held for another 25 seconds while the deformation reached a steady state. The maximum 
deflection predicted at the mid-point of the ribbon with the coarse and refined mesh models were 2.933 and 2.932 
meters, respectively. Both are very close to the exact solution and the maximum deformations predicted using the 
M3D4 membrane element with membrane pre-tension. 

B. Wrinkling of Sail Membranes under Tension Loads  
Geometrically nonlinear static and explicit time integration analyses were performed to simulate the wrinkling 

deformations of a square 0.5 m solar sail membrane due to a tension load of 2.45 N applied at each corner.  The 
thickness of the sail membrane is 2.54×10-5 m. The material properties are given in Table 1. These analyses were 
performed on a desktop PC with a 2.66 GHZ Pentium 4 processor and 768 MB RAM. The FE model12 shown in Fig. 
3 was used for the nonlinear static analysis. This full sail membrane model contains 4,640 S4R5 shell elements. 
Randomly generated out-of-plane imperfections, with amplitudes from –10% to 10% of the sail thickness, were 
imposed on the nodes in the loaded corner regions. Detailed geometrically nonlinear static analysis procedures for 
using the “stabilization” parameter in simulating the wrinkling deformations of this sail membrane can be found in 
Ref. 12. The wrinkling deformations of this sail membrane model predicted by the nonlinear static analysis are 
shown in Fig. 4.  

In the explicit analyses, the upper right quadrant of the full model with symmetry boundary conditions shown in 
Fig. 5 was used. This upper right quadrant model contains 1,160 S4R shell elements. Wrinkling deformations of the 
sail membrane were predicted with a damping parameter (α) of 0.001s-1. The effects of loading rates and mass 
scaling factors on the wrinkling deformations were studied. Two loading rates were used to smoothly apply the 
corner loads to the membrane in 5.0 s and 0.05 s, respectively. The actual mass of the membrane was used in the 
loading rate study. In the mass scaling study, two techniques in the ABAQUS code were applied to scale up the 
mass. One technique is to scale up the membrane density manually, and the other technique is to let ABAQUS 
automatically scale up the membrane density such that the stable time step length equals a given value.  

The wrinkling deformations predicted by the explicit analyses for the quadrant model with the two loading rates 
are shown in Figs. 6(a) and 7(a). Note that deformations along the free edge are larger than indicated by the color 
contour plots. The scale of the contour plots was selected to emphasize the wrinkling deformations away from the 
free edges. The minimum stable time step (∆t) for these two loading rate analyses was 1.29×10-7 seconds. The 
internal and kinetic energies of the model as a function of time are also plotted in Figs. 6(b) and 7(b). The wrinkle 
patterns and the maximum out-of plane-deformation of the dominant wrinkle (maximum positive value of the 
legend), shown in Figs. 6(a) and 7(a), are almost the same for both loading cases. Furthermore, the kinetic energies 
for both loading rates are insignificant (near zero) compared to the internal energies. The results in Figs. 6 and 7 
indicate that a wide range of loading rates with the explicit analysis may be used for predicting wrinkling 
deformations. Increasing the loading rate can significantly reduce the central processing unit (CPU) time. Obtaining 
the results in Fig. 7 required two CPU hours, while obtaining the results in Fig. 6 required more than two CPU 
weeks. The wrinkling deformations, shown in Figs. 6(a) and 7(a), are qualitatively similar to those shown in Fig. 4. 
However, the maximum wrinkle amplitudes (maximum positive w-displacements) shown in Figs. 6(a) and 7(a) are 
about 20% less than those shown in Fig. 4. The nonlinear static analysis was completed in about fourteen CPU 
minutes. It is apparent that the explicit analysis is very computationally intensive. In the next few paragraphs, 
attempts of using mass scaling to increase the stable time step length for shortening the computational time are 
discussed. 

To shorten the total computational time, a mass scaling technique was used to uniformly scale up the membrane 
density by 1,000 times. The minimum stable time step (∆t) for this case is increased to 4.1×10-6 seconds. The 
wrinkling deformations, shown in Fig. 8(a), are almost the same as those shown in Figs. 6(a) and 7(a). The internal 
and kinetic energies of the model as a function of time are also plotted in Fig. 8(b). Obtaining the results shown in 
Fig. 8 required about nine CPU hours. An analysis with a mass scaling factor of one million times the membrane 
density was also attempted, and the results are very similar to those shown in Fig. 8. However, the CPU time needed 
for this new analysis was reduced to less than an hour. We conclude that the computational time for predicting the 
membrane wrinkling deformations can be significantly reduced by using the mass scaling technique.  
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 The use of mass scaling needs to be exercised with caution. The following case reveals that excessive mass 
scaling can result in inaccurate solutions. In this case, the mass scaling technique was used to increase the stable 
time step length, ∆t, for the model to a given value of 0.001 seconds. The ABAQUS/Explicit code scales up the 
density of the model about sixty million times such that the minimum stable time step length of the model becomes 
0.001 seconds. As shown in Fig. 9(a), the wrinkle pattern is not correctly predicted. Furthermore, both the internal 
and kinetic energy have an oscillating behavior as depicted in Fig. 9(b). The internal energy change is still 
significant at steady state. Thus, the quasi-static solution was not reached. Note that the ad hoc rules listed 
previously are violated. 

C. Deformation of Sail Membrane under Distributed Loads 
Explicit and nonlinear static analyses were performed to simulate the out-of-plane deformations of a solar sail 

quadrant subjected to distributed loads including gravity and solar pressure loadings. The analyses were performed 
on a single 400 MHz processor of an SGI Octane/SE 2-400 R12000 machine with 1 GB RAM. The sail quadrant is 
an isosceles right triangle with a hypotenuse of 100 m. Each corner of the sail is attached to a short 0.0005 m radius 
cable with a length of 0.714 m. The other end of each cable is attached to a sail boom and is assumed to have fixed 
boundary conditions. The material properties of the sail and cables are listed in Tables 3 and 4, respectively.  
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      Table 3: Kapton sail material properties 
Thickness 1.0×10-6 m 
Modulus 2.48×109 N/m2 
Poisson’s Ratio 0.34 
Density  1425.2 kg/m3 
                                                                                         
e FE model and dimensions of the solar sail quadrant a
hell elements, 98 S3 shell elements, and three B31 bea
ements were used. S4R elements were used for the e
LIZE parameter value used was 0.0002. The nonlinear
re-stressed the sail quadrant by applying a temperature c
e second step applied the distributed load for either grav
ed. The CPU time for completing the nonlinear static 
an thirty minutes. 

 the case of using the explicit method to predict the defo
y and a mass proportional damping parameter (α) of 10
rane trembling. The full gravity load, an acceleration
ds. The deformed shapes of the triangular quadrant 
ear static analyses are shown in Figs. 11(a) and 11
ed shape and magnitude of deformations. The time his

0), is plotted in Fig. 12. The deflection reaches a cons
analysis, in about 15 seconds with a CPU time of abou
cable elements that limit the ∆t to be less than 4.75×10-5

 the case of using the explicit method to predict the sail 
ial density and a mass proportional damping paramete
0-6 N/m2 at one astronomical unit (AU), and was appl
s, not magnified for comparison with the deformed sha
lar pressure load predicted by the explicit and the nonlin
tively. Both analyses predicted the same deformed shap
aximum deflection, at node A (see Fig. 10), is plotted
tion to reach a constant value, within 1.5 percent of th
sed was more than ninety hours. Again the large CPU
solar pressure applied which results in the membrane de
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      Table 4: Kevlar cable properties 
Radius 0.0005 m 
Modulus 62.0×109 N/m2 
Poisson’s Ratio 0.036 
Density 1440 kg/m3 
CTE 4.6×10-6/oC 
                                                                                       
re shown in Fig. 10. This model contains 4,559 S4 or 
m elements. Note that in the nonlinear static analysis, 
xplicit analyses. In the nonlinear static analyses, the 
 static analyses were performed in two steps. The first 
hange of –304.5oC to contract the three Kevlar cables, 
ity or solar pressure while the pre-stress was gradually 

analysis for either the gravity or solar pressure load is 

rmation due to the gravity load, the actual sail material 
.0 sec-1 were used. The damping was applied to prevent 
 of 9.8 m/sec2, was applied to the membrane in 5.0 
under gravity load predicted by the explicit and the 
(b), respectively. Both analyses predicted the same 

tory of the maximum deflection, located at node A (see 
tant value, the same as that predicted by the nonlinear 
t ten hours. The lengthy CPU time was caused by the 
 seconds.  
deformation due to a solar pressure load, the actual sail 
r (α) of 1.0 s-1 were used. The solar pressure load is 
ied to the membrane in 10.0 seconds. The deformed 
pes shown in Fig. 11, of the triangular quadrant under 
ear static analyses are shown in Figs. 13(a) and 13(b), 
e and magnitude of deformations. The time history of 
 in Fig. 14. It takes about 150.0 s for the maximum 

at predicted by the nonlinear static analysis. The CPU 
 time is attributed to the short cable elements and the 
forming very slowly. 
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IV. Concluding Remarks 
The deformation of a long thin ribbon structure laterally loaded by gravity was determined using nonlinear static 

and quasi-static modeling methods. As a result of performing extensive numerical studies, it was determined that the 
quasi-static method, which employs explicit time integration, was found to be somewhat more robust for 
determining the correct deformed shape than the nonlinear static method. As ribbon structures are very much like 
solar sail structures, the quasi-static modeling method was put to the task of determining known solutions to the 
wrinkling of solar sail membranes. Explicit integration is computationally intensive, so both rate of loading and 
mass scaling approaches were employed to investigate how to reduce the computational effort.  
 In summary, this study determined that quasi-static modeling is a useful alternative tool for determining the 
deformations of solar sail structures, that employing accelerated loading and mass scaling approaches can reduce the 
computational effort required by the quasi-static models, and that excessive mass scaling can destroy the accuracy of 
the solution when predicting wrinkling patterns.  
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Figure 1: Kapton ribbon under gravity load; dimensions: 100 m x 1 m x 1 µ m.   
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(a) M3D4 elements, 100x4 mesh, and
pretension load 

 

(c) S4R5 elements, 500x4 mesh, and
STABLIZE parameter 0.0002 

(b) M3D4 elements, 500x4 mesh, and 
STABLIZE parameter of 0.0002  

 

Figure 2: Deflection shape along axial coordinate, x, 
depending on element type, mesh size, and value 
of the STABLIZE parameter, or pretension load 
used in the nonlinear static analyses.       
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Figure 3: Finite element model of a square thin membrane (0.5 m x0.5 m) loaded in tension.12 
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Figure 4: Wrinkling deformations of the square membrane predicted by nonlinear static analysis.  
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Figure 5: Symmetric upper right quadrant model for explicit analysis. 
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Figure 6: Explicit analysis results by using actual material density and taking five seconds to smoothly apply 
the corner loads. 
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Figure 7: Explicit analysis results by using actual material density and taking 0.05 seconds to smoothly apply     

  the corner loads. 
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Figure 8: Explicit analysis results by using a uniform mass scaling of 1,000 times and taking five seconds to   

 smoothly apply the corner loads. 
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Figure 9:  Results of an explicit analysis using a time step length of 0.001 seconds and taking 5.0 seconds to 

smoothly apply the corner loads. 
 
 

Figure 10:  One quadrant of solar sail membrane with cables. 
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Figure 10:  One quadrant of solar sail membrane with cables. 
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Figure 11: Transverse deflection of one membrane quadrant (with attached cables) of a 100 m solar sail 

 due to the gravity load. 
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Figure 12: Maximum deflections of solar sail due to solar pressure.  
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Figure 13: Transverse deflection of one membrane quadrant (with attached cables) of a 100 m solar sail 

   due to the solar pressure. 

Figure 1 olar sail due to solar pressure. 
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